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This� book� is� intended� to� provide� students� with� a� detailed� guide� to�
the� reasoning� that� forms� the� basis� for� physical� chemistry—the�

framework� that� unites� all� chemistry.� Te� study� of� physical� chemistry�
gives� us� the� opportunity� to� look� at� our� science� as� an� integrated� whole,�
with�each�concept�connected�to�the�next.�My�goal�has�been�to�trace�those�
connections,� step-by-step� whenever� possible,� to� show� how� each� new�
concept�makes�sense�given�its�place�in�the�framework.

Because�its�ideas�build�upon�each�other�in�this�way,�physical�chemistry�
can�serve�as�the�foundation�for�an�intuitive�understanding�of�chemistry�in�
all� its� forms,� whether� synthesizing� new� compounds,� analyzing� samples�
in� a� forensic� laboratory,� or� studying� the� properties� of� novel� materials.�
To�that�end,�this�book�emphasizes�the�shared,�fundamental�principles�of�
chemistry,�showing�how�we�can�justify�the�form�and�behavior�of�complex�
chemical�systems�by�applying�the�laws�of�mathematics�and�physics�to�the�
structures�of�individual�particles�and�then�extrapolating�to�larger�systems.�
We�learn�physical�chemistry�so�that�we�can�recognize�these�fundamental�
principles�when�we�run�into�them�in�our�other�courses�and�in�our�careers.�
Te�relevance�of�this�discipline�extends�beyond�chemistry�to�engineering,�
physics,�biology,�and�medicine:�any�feld�in�which�the�molecular�structure�
of�matter�is�important.

A� key� step� toward� cultivating� an� intuition� about� chemistry� is� a�
thorough�and�convincing�presentation�of�these�fundamentals.�When�we�
see�not�only�what�the�ideas�are,�but�also�how�they�link�together,�those�ideas�
become� more� discernible� when� we� examine� a� new� chemical� system� or�
process.�Te�following�features�of�this�text�seek�to�achieve�that�objective.

•� My�aim�is�to�provide�a�rigorous�treatment�of�the�subject�in�a�relaxed�
style.� A� combination� of� qualitative� summaries� and� annotated,� step-
by-step� derivations� illuminates� the� logic� connecting� the� theory� to�
the�parameters�that�we�can�measure�by�experiment.�Although�we�use�
a� lot� of� math� to� justify� the� theory� we� are� developing,� the� math� will�
always�make�sense�if�we�look�at�it�carefully.�We�take�advantage�of�this�
to� strengthen� our� confdence� in� the� results� and� our� understanding�
of�how�the�math�relates�to�the�physics.�Nothing�is�more�empowering�
in� physical� chemistry� than� fnding� that� you� can� successfully� predict�
a� phenomenon� using� both� mathematics� and� a� qualitative� physical�
argument.�Te�manifestation�of�atomic�and�molecular�structure�in�bulk�
properties�of�materials�is�a�theme�that�informs�the�unhurried�narrative�
throughout�the�text.
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•� To�illustrate�how�our�understanding�in�this�feld�continues�to�advance,�
we  take� the� time� to� examine� several� tools� commonly� used� in� the�
laboratory� (“Tools� of� the� Trade”),� while� profles� of� contemporary�
scientists� (“Biosketches”)� showcase� the� ever-expanding� frontiers�
of� physical� chemistry.� Our� intuition� about� chemistry� operates� at� a�
deep� level,� held� together� by� the� theoretical� framework,� but� these�
examples�show�how�others�are�applying�their�understanding�to�solve�
real�problems�in�the�laboratory�and�beyond.�Tey�inspire�us�to�think�
creatively�about�how�the�most�fundamental�chemical�laws�can�answer�
our�own�questions�about�molecular�structure�and�behavior.

•� Our�increasing�appreciation�and�exploration�of�the�interface�between�
the� molecular� and� the� bulk� scales� has� inspired� a� forward-looking�
coverage�of� topics� that� includes�chapters�dedicated�to� intermolecular�
interactions,�nanoscale�chemical�structure,�and�liquid�structure.
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A Rigorous Standard 
with a Relaxed Style

A course in physical chemistry can describe the physical universe 
with uncommon depth, breadth, and clarity. The aim of this book 
is to help the reader make the most of the experience.
              —Andrew Cooksy

“
”

PHYSICAL CHEMISTRY is the framework that unites all chemistry—providing 
powerful insight into the discipline as an integrated series of connected concepts.

As an instructor and author, Andrew Cooksy helps students uncover these connections 
while showing how they can be expressed in mathematical form and demonstrating the 
power that derives from such expressions.

The text’s lively and relaxed narrative illuminates the relationship between the 
mathematical and the conceptual for students. By formulating the fundamental 
principles of physical chemistry in a mathematically precise but easily comprehensible 
way, students are able to acquire deeper insight—and greater mastery—than they 
ever thought possible.

This innovative approach is supported by several exclusive features:

• Split quantum and thermodynamics volumes can be taught in either 
order for maximum course � exibility. 

• A discrete chapter (Chapter A) included in each volume summarizes the 
physics and mathematics used in physical chemistry.

• Chapter opening sections orient the students within the larger context 
of physical chemistry, provide an overview of the chapter, preview the 
physical and mathematical relationships that will be utilized, and set 
de� ned chapter objectives.

• Unique pedagogical features include annotations for key steps in 
derivations and an innovative use of color to identify recurring elements 
in equations.



Re� ective of the author’s popular lecture strategy, chapter opening and closing 
features ground each topic within the larger framework of physical chemistry and 
help students stay oriented as they follow the development of chapter concepts.

Uncovering connections between 
foundational concepts

Visual Roadmaps help students 
see the relationship between the 
chapters in each part of the text 
and the topics in each chapter.

Learning Objectives outline 
the skills students should 
expect to acquire from their 
study of the chapter.

Goal: Why Are We Here? 
chapter openers prepare 
students for the work ahead 
using one to two simple 
sentences.

Context: Where Are We Now? 
helps students understand 
how the chapter they are 
starting is related to what has 
come before and its place in 
the unfolding development of 
physical chemistry.

Supporting Text: How Did 
We Get Here? reviews 
previously introduced 
concepts, mathematical 
tools, and topical 
relationships that the new 
chapter will draw on.

Context: Where Do We Go 
From Here? sections at the end 
of each chapter afford students 
a perspective on what they have 
just learned, and how it provides 
the foundation for the material 
explored in the next chapter.



Through learning about the instruments and methods of modern physical 
chemistry and meeting researchers at work today, students gain an 
appreciation for the practical applications of this science to many � elds.

Active research, tools, 
and techniques

Tools of the Trade sections 
highlight the design and 
operation of commonly used 
experimental apparatuses and 
how they relate to the principles 
discussed in the chapter.

Biosketches highlight a diverse array of 
contemporary scientists and engineers 
and their current research relating to 
physical chemistry.  



18    CHAPTER A  Introduction: Tools from Math and Physics

 By the way, it is possible to apply rules of symmetry to extend some of the 
 analytical solutions in  Table   A.5   . For example, when the integrand is    x2ne-ax2

   , 
then the function is exactly the same from 0 to    - �     as from 0 to    + �     ( Fig.   A.3a   ). 
� erefore, the integral    1

�

- �
x2ne-ax2

 dx    is equal to 2 times    1
�

0 x2ne-ax2

 dx    .  However, 
if the power of    x    is odd,    2n + 1   , then the function is negative when    x 6 0    and 
positive when    x 7 0    ( Fig.   A.3b   ). � e integral from    -�    to 0 cancels the integral 
from 0 to    +�   , so    1

�

- �
x2n+1e-ax2

 dx = 0   .   

  Numerical Integration 
 Not all integrals have algebraic solutions, and some have algebraic solutions 
only between certain limits (such as 0 and    �   ). With suitable computers, any 
 integral can be calculated without trying to cram it into some algebraic form. 
� is is accomplished by going back to the de� nition in calculus, 

      
L

x2

x1

f1x2dx =  lim
dxS0
ba

N

i=1
f [x1 +  i dx] rdx (A.20)    

  SOLUTION   � ese can be solved by substitution of the expressions in  Table   A.5   . 

     (a)    
L

4

1

dx
x

= ln x `
4

1
= ln 4 - ln 1 = 1.386 - 0 = 1.386     

    (b)    
L

�

0

e-2x dx = -
1

2
 e-2x `

�

0
= -

1

2
1e- �-  e02 = -

1

2
10 - 12 =

1

2
     

    (c)    
L

p>3

0

(3 cos2 u - 1) sin u du = 3-cos3 u + cos u4 `
p>3

0

         = c- a 1

2
b

3

+ a 1

2
b d - [-(1)3 + (1)] =

3

8
 .       

–4 –3 –2 –1 0

(a) (b)

1
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2 3 4
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0.3

0.2

0.1

0

f(
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  FIGURE A.3   Symmetry and 
de� nite integrals.         (a) If a 
function    f(x)    is equal to    f(-x)    
for all values of  x , then the 
integral from    -�    to    �    is equal 
to 2 times the integral from 0 to 
   �    . (b) If    f(x)    is equal to    - f(-x)    ,  
then the integral from    -�    to    �    
is 0.   
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the value of    C    is lost. When we undo the derivative by taking the  integral, 
we add an unknown constant of integration to the integrated  expression. 
Omit this constant when solving de� nite integrals, because the limits of 
integration will determine its value.  

   3. � e function being integrated is the  integrand  ,  and it is multiplied by the 
incremental change along the coordinates, called the volume element.   

 Most of the algebraic solutions to integrals that we need appear in  Table   A.5   .   

 TABLE A.5   Solutions to selected integrals.         In these equations,    a    and    b    are constants,    n    is a 
whole number, and    C    is the constant of integration.

 
L

xndx =
1

n +  1
 xn +  1 +  C 

L
adx = a(x + C)

 
L

1

x
 dx = ln x +  C 

L
ex dx = ex + C

 
L

ln x dx = x ln x - x + C 
L

dx

x(a + bx)
 = -

1

a
 ln a a + bx

x
b + C

 
L

sin x dx = -cos x + C 
L

cos x dx = sin x + C

 
L

sin2 (ax) dx =
x

2
-

sin (2ax)

4a
+ C 

L
cos2 (ax) dx =

x

2
+

sin (2ax)

4a
+ C

 
L

[f (x) + g (x)]dx =
L

f (x) dx +
L

g (x) dx 
L

b

a

dx = x 0 ba = b - a

 
L

�

0

xne-ax dx =
n!

an+1  
L

�

0

e-ax2

 dx =
1

2
ap

a
b

1/2

 
L

�

0

xe-ax2

 dx =
1

2a
 

L

�

0

x2 e-ax2

 dx =
1

4
ap

a3 b
1/2

 
L

�

0

x2n+1 e-ax2

 dx =
n!

2an+1  
L

�

0

x2n e-ax2

 dx =
[1 # 3 # 5 c(2n - 1)]2p

2n+1 an+ (1/2)
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  EXAMPLE A.4 Analytical Integration 

  PROBLEM   Evaluate the numerical value for each of the following expressions. 
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GOAL   Why Are We Here?

Te goal of this textbook is a concise and elegant exposition of the 
 theoretical framework that forms the basis for all modern chemistry. To 
accomplish this, we are going to draw regularly on your knowledge of 
 algebra, geometry, calculus, mechanics, electromagnetism, and  chemistry. 
Physical chemistry is both rewarding and challenging in this way.

Mathematics of several varieties is our most valuable tool, and in this 
text we shall be interested in it only as a tool. It is not necessary, for 
 example, that you remember how to derive the algebraic solution to the 
integral 1 ln x dx, but it will help if you know that an algebraic solution 
exists and how to use it (because with it we will obtain a useful equation 
for difusion).Tis chapter is a summary of the math and physics that 
serve as our starting point as we explore the theory of chemistry. If you 
are embarking on this course, you may wish to review any of the  following 
topics that appear alarmingly unfamiliar at frst glance.

A.1   Mathematics
Algebra and Units
Basic Formula Manipulations
Te use of algebra in this text is similar to its use in introductory  physics 
and chemistry courses. We will routinely encounter the basic manipula-
tions of variables in equations, especially to solve for one unknown in 
terms of several known constants. A tough example would be to solve for 
nB in the equation

TB = TB� c
VT - VA

VT - VA�
d

- nBR>CB

Introduction: Tools 
from Math and 
Physics

A

Part III 
Molecular  
InteractIons

Part II 
Molecular 
structure

Part I 
atoMIc 
structure



4    chAPTer A    Introduction: tools from Math and Physics

Te key is to see that a solution must be available, because the variable we are 
solving for appears in only one place, and a series of operations will allow us to 
isolate it on one side of the equation. Once we recognize that, then we can 
methodically undo the operations on one side of the equation to leave nB: divide 
both sides by TB�, take the logarithm of both sides to bring nB down to earth from 
the exponent, and fnally divide both sides by the factor that leaves nB alone on 
one side of the equation. Tose steps eventually bring us to

nB = -
CB

R
 

lnaTB

TB�
b

lnaVT - VA

VT - VA�
b

.

One issue that makes the algebra something of a challenge is the notation. To put 
it mildly, we will use a lot of algebraic symbols. In fact, with the exception of “O,” 
which looks too much like a zero, we use the entire Roman alphabet at least twice, 
and most of the Greek.1 Te symbols have been chosen in hopes of an optimal com-
bination of (a) preventing the same symbol from appearing with diferent meanings 
in the same chapter, (b) adherence to the conventional usage in the scientifc litera-
ture, and (c) clarity of meaning. Unfortunately, these three aims cannot always be 
satisfed simultaneously. Physical chemistry is a synthesis of work done by pioneers 
in mathematics, physics, and chemistry, ofen without any intention that the results 
would one  day become integrated into a general theory of chemistry. We bring 
together many felds that evolved independently, and the way these felds ft together 
is one of the joys of this course. Admittedly, the complexity of the notation is not.

Te text provides guides to the notation used in long derivations and sample 
calculations to show how the notation is used. Please be aware, however, that no 
textbook gimmick can substitute for the reader’s understanding of the parame-
ters represented by these symbols. If you recognize the diference between the 
fundamental charge e and the base of the natural logarithm e, you are in no 
 danger of confusing the two, even though they are both represented by the 
 letter “e,” sometimes appearing in the same equation.

Unit Analysis and Reasonable Answers
One of the most helpful tools for checking algebra and for keeping these many 
symbols under control is unit analysis. If a problem asks you to solve for the 
value of some variable �, and you’re not certain what units you will get in the 
end, then it’s likely that the meaning of � has not been made entirely clear. In 
many cases, including viscosities and wavefunctions, the units are not obvious 
from the variable’s defnition in words but are easily determined from an impor-
tant equation in which the variable appears. Quick: how do you write the units 
for pressure in terms of mass and distance and time? If you recall the defnition 
of the pressure as force per unit area

P =
F

A

1If the lower case Greek letter upsilon (y) didn’t look so much like an italic “v” (v), there are at least 
two places it would have been used. It’s bad enough that v and the Greek nu (n) are so similar and 
sometimes appear in the same equation.
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and know that force has units of mass times acceleration, then pressure must 
have units of

 
force

distance2 =
mass *  speed/time

distance2 =
mass *  distance/time2

distance2

=
mass

distance *  time2 = kg m- 1 s- 2. (A.1)

It will not be worthwhile to attempt a problem before understanding the 
 variables involved.

Unit analysis is also a useful guard against algebraic mistakes. An error in 
 setting up an algebraic solution ofen changes the units of the answer, and a 
check of the answer’s units will show the mistake. Tis does not protect 
against many other mistakes, however, such as dividing instead of multiplying 
by 1010 to convert a length from meters to angstroms. In such cases, there is 
no   replacement for knowing what range of values is appropriate for the 
 quantity. Recognizing a reasonable value for a particular variable is primarily 
a  matter of  familiarity with some typical parameters. Te values given in  
Table A.1 are  meant only to give common orders of magnitude for various 
quantities. Answers  difering by  factors of 10 from these may be possible, but 
not common.

TABle A.1 Some typical values for parameters in chemical problems. Tese are meant 
only as a rough guide to expected values under typical conditions.

Parameter Value (in typical units)

chemical bond length 1.5 Å

chemical bond energy 400 kJ mol - 1

molecular speed 200 m s - 1

mass density (solid or liquid) 1 g cm - 3

exAMPLe A.1 Unreasonable Answers

PrObLeM Unit analysis and recognition of a reasonable value can prevent errors such as those that resulted 
in the following answers. Identify the problem with these results for the requested quantity:
Quantity Wrong answer

the density of NaCl(s) 1.3 # 10- 24 g cm - 3

the density of NaCl(s) 3.3 # 107 g cm - 1

bond length of CsI 12.3 m

speed of a molecule 4.55 # 1011 m s - 1

momentum of electron 5 # 10- 10 m s - 1

SOLuTIOn Each of those examples gives an answer of entirely the wrong magnitude (which could arise 
from using the wrong conversion factor, the wrong units, or both).



6    chAPTer A    Introduction: tools from Math and Physics

In many problems, the units themselves require some algebraic manipulation 
because several units are products of other units. For example, the unit of 
 pressure, 1 kg m- 1 s- 2, obtained in Eq. A.1, is called the “pascal.” We shall also 
encounter an equation

En = -
Z2mee

4

2(4pe0)2n2U2 ,

in which En has units of energy, Z  and n are unitless, me has units of mass, e has 
units of charge, e0 has units of charge2 energy-1 distance-1, and U has units 
of  energy *  time. Te units on each side of the equation must be identical, 
and this we can show by substituting in the appropriate units for mass, charge, 
and energy:

1 J = 1 
(kg)(C)4

(C2
 

  J- 1 m- 1)2
 (J s)2

= 1 

(kg)(C)4

C4 s2/m2

= 1 kg m2 s- 2 = 1 J. (A.2)
Tis may be a good place to remind you about that bothersome factor of 4pe0 
and some other aspects of the SI units convention.

SI Units
Te accepted standard for units in the scientifc literature is the Système 
International (SI), based on the meter, kilogram, second, coulomb, kelvin, 
mole, and candela.2 It is acceptable SI practice to use combinations of these 
units and to convert up or down by factors of 1000. So, for example, the SI unit 
of force should have units of (mass *  acceleration), or kg m s- 2, a unit 
 commonly called the newton and abbreviated N. Energy has units of force *  
distance, so the SI unit is kg m2 s- 2, also called the joule and abbreviated J. But 
the joule is inconveniently small for measuring, say, the energy released in a 
 chemical reaction, so one could use the kilojoule (103 J) and remain true to the 
SI standard. We’ll give special attention to energy units shortly.

A practical advantage of a single system for all physical units is that—if 
you’re careful—the units take care of themselves. Allowing for the factors of 
1000, if all the quantities on one side of an equation are in SI units, the value 

Quantity Wrong answer Why unreasonable
the density of NaCl(s) 1.3 # 10- 24 g cm - 3 too small

the density of NaCl(s) 3.3 # 107 g cm - 1 wrong units

bond length of CsI 12.3 m too big
speed of a molecule 4.55 # 1011 m s - 1 too big (greater than speed of light)

momentum of electron 5 # 10- 10 m s - 1 wrong units

2If you don’t recall the candela, that’s understandable. It’s the unit of luminous intensity, and with 
that, makes its last appearance in this text.
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on the other side will also be in SI units. If an object of mass 2.0 kg rests  
on a table, subject to the gravitational acceleration of 9.8 m s - 2, then I 
can calculate the force it exerts on the table by multiplying the mass and  
the acceleration,

F = ma = (2.0 kg)(9.8 m s- 2) = 20 N,

and I can be certain that the fnal value is in SI units for force, namely newtons.
Standardization of units takes time, however, and you can be certain that the 

chemical data you encounter in your career will not adhere to one standard. 
One formerly common set of units, now widely discouraged, is the Gaussian or 
CGS system, similar to SI except that it replaces the meter, kilogram, and 
 coulomb with the centimeter, gram, and electrostatic unit, respectively. Another 
convention, now on the rise, is the set of atomic units, for which all units are 
expressed as combinations of fundamental physical constants such as the  electron 
mass me   and the elementary charge e.

Te SI system, while having some features convenient to engineering, 
 sufers from one inconvenience in our applications: elementary calculations 
that include electric charges or magnetic felds require the use of constants 
called the permeability m0 and permittivity e0 of free space. Although these 
 constants originally appeared with a physical meaning attached, for our 
 purposes they are merely conversion factors. In particular, the factor 4pe0 
converts SI units of coulomb squared to units of energy times distance, J # m. 
For  example, the energy of repulsion between two electrons at a separation of 
d = 1.0 # 10- 10 m is

e2

4pe0d
=

(1.602 # 10- 19 C)2

(1.113 # 10- 10 C2  J- 1 m- 1)(1.0 # 10- 10 m)
= 2.306 # 10- 18 J. (A.3)

In contrast, the atomic and CGS units fold this conversion into the  defnition 
of the charge, and the factor of 4pe0 would not appear in the calculation. For 
all equations in this text involving the forces between charged particles, we 
 conform to the standards of the day and use SI units and the associated 
 factor of 4pe0.

In other cases, however, we will not adhere strictly to the SI standard. Even 
allowing for factors of 1000, I don’t know any chemists who express molecular 
dipole moments in coulomb meters, a unit too large for its purpose by 30 orders 
of magnitude (not even prefxes like “micro-” and “nano-” are enough to save it). 
Te conventional unit remains the debye, which is derived from CGS units 
(adjusted by 18 orders of magnitude, it must be said) and just the right size for 
measuring typical bond dipoles. Te angstrom (Å) also remains in wide use in 
chemistry because it is a metric unit (1 Å = 10 - 10 m) that falls within a factor 
of 2 of almost any chemical bond length.

Of all the physical parameters, energy has the greatest diversity in commonly 
used scientifc units. Tere are several ways to express energy, even afer 
 excluding all sorts of nonmetric energy units (such as the British thermal unit, 
kilowatt-hour, foot-pound, ton of TNT, and—most beloved of chemists—the 
calorie). Other conventions appear when discussing the interaction of  radiation 
with matter, for which it is common to quantify energy in terms of the frequency 
(s - 1) or reciprocal wavelength (cm - 1) of the radiation. Under the proper 
assumptions, it may also be informative to convert an energy to a corresponding 
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temperature, in units of kelvin. Typical laboratory samples of a  compound have 
numbers of molecules in the range of 1020 or more, and  molecular  energies are 
therefore ofen given in terms of the energy per mole of the  compound (e.g., 
kJ mol - 1). Tese cases will be explained as they appear, and they are  summarized 
in the conversion table for energies on this textbook’s back endpapers.

Once these non-SI units are introduced, please make sure you are comfortable 
with the algebra needed to convert from one set of units to another. Tis one 
skill, mundane as it may seem, will likely be demanded of you in any career in 
science or engineering. Famous and costly accidents have occurred because this 
routine procedure was not given its due attention.3

Complex Numbers
Complex numbers are composed of a real number and an imaginary number 
added together. For our purposes, a complex number serves as a sort of  two- 
dimensional number; the imaginary part contains data on a measurement 
 distinct from the data given by the real part. For example, a sinusoidal wave that 
varies in time may be described by a complex number in which the real part 
gives the shape of the wave at the current time and the imaginary part describes 
what the wave will look like a short time later.

Te imaginary part of any complex number is a real number multiplied by 
i K  2-1. (Te symbol “K” is used throughout this text to indicate a defnition, 
as opposed to the “=” symbol, used for equalities that can be proved mathemati-
cally.) Tis relationship between i and -1 allows the imaginary part of a complex 
number to infuence the real-number results of an algebraic operation. For 
example, if a and b are both real numbers, then a + ib is complex, with a the 
real part and ib the imaginary part. Te complex conjugate of a + ib, written 
(a + ib)*, is equal to a - ib, and the product of any number with its complex 
conjugate is a real number:

(a + ib)(a - ib) = a2 - iba + iba - i2b2 = a2 + b2. (A.4)
Notice that the value of b—even though it was contained entirely in the imagi-
nary parts of the two original complex numbers—contributes to the value of the 
real number quantity that results from this operation.

Many of the mathematical functions in the text are complex, but multiplica-
tion by the complex conjugate yields a real function, which can correspond 
directly to a measurable property. For that reason, we ofen judge the validity of 
the functions by whether we can integrate over the product f  *f . In this text, 
a well-behaved function f  is single-valued, fnite at all points, and yields a fnite 
value when f  *f  is integrated over all points in space. To be very well-behaved, 
the function and its derivatives should also be continuous functions, but we will 
use a few functions that are naughty in this regard.

3A prominent example is the loss in 1999 of the unmanned Mars Climate Orbiter, a probe that 
entered the Martian atmosphere too low and burned up because engineers were sending course 
correction data calculated using forces in pounds to an on-board system that was designed to 
accept the data in newtons.
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Trigonometry
Elementary results from trigonometry play an important role in our equations of 
motion, and therefore you should know the defnitions of the sine, cosine, and 
tangent functions (and their inverses) as signed ratios of the lengths of the sides 
of a right triangle. Using the triangle drawn in Fig. A.1, with sides of length y, x, 
and r, we would defne these functions as follows:

 sin f K
y

r
   csc f K

1

sin f
=

r
y

  cos f K
x
r
   sec f K

1

cos f
=

r
x

 (A.5)

 tan f K
y

x
   cot f K

1

tan f
=

x
y

Te sign is important. If f lies between 90 �  and 270 � , then the x value becomes 
negative, so cos f and sec f would be less than zero. Similarly, sin f and csc f are 
negative for f between 180 �  and 360 � .

Please also make sure you are comfortable using the trigonometric identities 
listed in Table A.2. Tese are algebraic manipulations that may allow us to 
 simplify equations or to isolate an unknown variable.

exAMPLe A.2 Complex Conjugates

PrObLeM Write the complex conjugate f  * for each of the following expressions f  and show that the value 
of f  *f  is real.
1.  5 + 5i

2. -x> i
3. cos x - i sin x

SOLuTIOn

1. f  * = 5 - 5i

  f  *f =  (5 + 5i)(5 - 5i) = 25 + 25 = 50

2. First we would like to put this in the form a + ib, so we multiply by ii to bring the factor of i into the 
numerator:

f = -
x

i
a i

i
b = -

ix

-1
= ix.

Te real part of this function is zero, but for any complex conjugate, we change the sign on the  imaginary 
term:   f  * = - ix

  f  *f = (ix)(- ix) = - i2x2 = x2

3. f  * = cos x + i sin x

  f  *f = cos2 x - i2 sin2 x = cos2 x + sin2 x = 1

x

r y

ϕ

▲  FIgURe A.1  Right triangle 
used to defne trigonometric 
functions of the angle F.




